Modeling the Amount of Waste Generated by Households in the Greater Accra Region Using Artificial Neural Networks

Author:

Chapman-Wardy Charlotte1,Asiedu Louis1ORCID,Doku-Amponsah Kwabena1,Mettle Felix O.1ORCID

Affiliation:

1. Department of Statistics and Actuarial Science, School of Physical and Mathematical Sciences, University of Ghana, Legon, Accra, Ghana

Abstract

Waste can be defined as solids or liquids unwanted by members of the society and meant to be disposed. In developing countries such as Ghana, the management of waste is the responsibility of the metropolitan authorities. These authorities do not seem to have effective management of the waste situation, and therefore, it is not unusual to see waste clog the drains and litter the streets of the capital city, Accra. The impact of waste on the environment, along with its associated health-related problems, cannot be overemphasized. The Joint Monitoring Programme report in 2015 ranked Ghana as the seventh dirtiest country in the world. The lack of effective waste management planning is evident in the large amount of waste dumped in open areas and gutters that remains uncollected. In planning for solid waste management, reliable data concerning waste generation, influencing factors on waste generation, and a reliable forecast of waste quantities are required. This study used two algorithms, namely, Levenberg–Marquardt and the Bayesian regularization, to estimate the parameters of an artificial neural network model fitted to predict the average monthly waste generated and critically assess the factors that influence solid waste generation in some selected districts of the Greater Accra region. The study found Bayesian regularization algorithm to be suitable with the minimum mean square error of 104.78559 on training data and 217.12465 on test data and higher correlation coefficients (0.99801 on training data, 0.99570 on test data, and 0.99767 on the overall data) between the target variables (average monthly waste generated) and the predicted outputs. House size, districts, employment category, dominant religion, and house type with respective importance of 0.56, 0.172, 0.061, 0.027, and 0.026 were found to be the top five important input variables required for forecasting household waste. It is recommended that efforts of the government and its stakeholders to reduce the amount of waste generated by households be directed at providing bins, increasing the frequency of waste collection (especially in highly populated areas), and managing the economic activities in the top five selected districts (Ledzekuku Krowor, Tema West, Asheidu Keteke, Ashaiman, and Ayawaso West), amongst others.

Funder

Carnegie Corporation of New York

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building Blocks;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

2. Automated Assessment of Municipal Solid Wastes Using a Hybrid Sine Cosine Algorithm-Based Neural Network;Lecture Notes in Civil Engineering;2024

3. Mathematical Modelling for Solid Waste Management;Environmental Science and Engineering;2024

4. Characterization of dumpsite waste of different ages in Ghana;Heliyon;2023-05

5. Patterns of waste collection: A time series model for market waste forecasting in the Kumasi Metropolis, Ghana;Cleaner Waste Systems;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3