Fetal Cerebral Hemodynamic Changes in Preeclampsia Patients by Ultrasonic Imaging under Intelligent Algorithm

Author:

Zhu Di1ORCID,Ding Ru2ORCID,Ma Hongxia3ORCID,Jiang Shenglin1ORCID,Li Lijie1ORCID

Affiliation:

1. Department of Obstetrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, Zhejiang, China

2. Department of Gastroenterology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310022, Zhejiang, China

3. Department of Ultrasound Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, Zhejiang, China

Abstract

This study was aimed at evaluating the adoption value of ultrasound imaging features on fetal cerebral hemodynamics in preeclampsia patients based on the partial difference algorithm and the hybrid segmentation network (HSegNet) algorithm. Forty pregnant women with preeclampsia diagnosed by ultrasound examination were selected as the research objects, and another forty normal pregnant women were selected as the control. Then, by using the partial differential algorithm, the imaging of fetal cerebral hemodynamics in preeclampsia patients was enhanced and optimized, and the general clinical data and experimental results were collected. The results showed that the automatic labeling of fetal cerebral artery in fetal middle cerebral artery (MCA) hemodynamic images was realized by HSegNet algorithm model, and the final accuracy was 97.3%, which had a good consistency with the manual annotation of doctors. Education level was a protective factor for preeclampsia (odds ratio (OR) = 0.535). Body mass index (BMI) and family history of hypertension during pregnancy were independent risk factors for preeclampsia (OR = 1.286, and 2.774, respectively). MCA end-diastolic volume (EDV) of preeclampsia fetuses was higher than that of normal fetuses. The MCA systolic-diastolic ratio (S/D), the pulsatility index (PI), and the resistive index (RI) in the preeclampsia group were significantly lower than those in the normal pregnancy group. The results showed that MCA PI, MCA RI, and MCA S/D had certain predictive values for the occurrence of adverse pregnancy outcomes ( P < 0.05 ). In summary, the intelligent algorithm-based fetal MCA hemodynamic ultrasound image in the study could effectively predict pregnancy outcomes of patients and provide certain theoretical support for the subsequent reduction of adverse pregnancy outcomes in patients with preeclampsia.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3