A Bioinformatic Approach Based on Systems Biology to Determine the Effects of SARS-CoV-2 Infection in Patients with Hypertrophic Cardiomyopathy

Author:

Han Xiao1ORCID,Wang Fei2,Yang Ping3ORCID,Di Bin1,Xu Xiangdong1,Zhang Chunya1,Yao Man1,Sun Yaping1,Lin Yangyi4

Affiliation:

1. Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China

2. Department of Emergency Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China

3. Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China

4. Department of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Abstract

Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide. While COVID-19 generally affects the lungs, it also damages other organs, including those of the cardiovascular system. Hypertrophic cardiomyopathy (HCM) is a common genetic cardiovascular disorder. Studies have shown that HCM patients with COVID-19 have a higher mortality rate; however, the reason for this phenomenon is not yet elucidated. Herein, we conducted transcriptomic analyses to identify shared biomarkers between HCM and COVID-19 to bridge this knowledge gap. Differentially expressed genes (DEGs) were obtained using the Gene Expression Omnibus ribonucleic acid (RNA) sequencing datasets, GSE147507 and GSE89714, to identify shared pathways and potential drug candidates. We discovered 30 DEGs that were common between these two datasets. Using a combination of statistical and biological tools, protein-protein interactions were constructed in response to these findings to support hub genes and modules. We discovered that HCM is linked to COVID-19 progression based on a functional analysis under ontology terms. Based on the DEGs identified from the datasets, a coregulatory network of transcription factors, genes, proteins, and microRNAs was also discovered. Lastly, our research suggests that the potential drugs we identified might be helpful for COVID-19 therapy.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3