A More Realistic Study on the Mechanical Properties of CFRC Composite Grouting Material under a Long-Term Water Immersion Process

Author:

Xiao Yao1,Deng Huafeng1ORCID,Li Jianlin1,Assefa Eleyas2ORCID

Affiliation:

1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang, Hubei 443002, China

2. College of Architecture and Civil Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Abstract

The long-term effect of water immersion on the mechanical properties of CFRC composite grouting materials was studied by using five different carbon fiber contents (0, 0.25%, 0.50%, 0.75%, and 1.00%). The direct shear and long-term immersion tests were performed based on the specified and optimum values of carbon fiber content, respectively. The results showed the following: (1) the application of carbon fiber significantly improved the shear resistance of CRFC composite grouting material by using “reinforcing” and “anchoring” actions. The shear strength of the specimen was increasing by 5.66%∼43.41% when the carbon fiber content increased from 0.25% to 1.00%. After a comprehensive analysis, the optimum carbon fiber content was found to be 0.75%. (2) The degradation in the compressive and tensile strength of CRFC composite specimens exhibited a consistent trend (i.e., a steep gradient was gradually followed by a gentle slope) under a long-term water immersion process. About 90% of the total degradation in the compressive and tensile strength has occurred in 90 immersion days (i.e., 16.05% and 18.45%, respectively). In comparison, the degradation in the tensile strength (20.05%) was slightly higher than the compressive strength (18.16%). (3) Under the long-term water immersion process: the properties of the specimens were gradually deteriorating, the carbon fibers were gradually reaching a fatigue stage, and the bonding properties of carbon fiber was decreasing, which resulted in a reduction in the compressive and tensile strength. The uniaxial compression failure mode changed from brittle to ductile, and the development of local failure was very noticeable. Based on the findings of this paper, groundwater has a significant impact on the mechanical properties of grouted rock mass such as dam foundations and abutments. Therefore, the degradation in the grouting materials has to be considered in practical cases.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3