Affiliation:
1. Shanxi Key Laboratory of Signal Capturing & Processing, North University of China, Taiyuan 030051, China
2. Lvliang University, Lvliang 033000, China
Abstract
The aim of the investigation presented here was to understand how the viscosity parameters of an adhesive layer affect group velocity and attenuation of the double-layer adhered pipe. Various parameter combinations (attenuation of longitudinal wave and shear wave, pαL and qαT; thickness, d; and density, nρ) were utilized in order to generate different uncured degrees of the adhesive layer. In the frequency range 0∼500 kHz, the group velocity dispersion curves and attenuation dispersion curves were obtained from these models. Then, the group velocity and attenuation of the two commonly used modes, L0,2 and T0,1, were compared and analyzed. The results have shown that it is important to remark that little effect on group velocity was caused, and significant linear increases of attenuation occur with increase in q, d, and n. However, variable p had little effect on attenuation; more modes emerged when d increased or n decreased, causing difficulties on mode identification and signal processing. The numerical results provided a useful way to evaluate bonding quality by measuring the group velocity and attenuation in the pipelines.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献