Improve Performance by a Fuzzy-Based Dynamic Replication Algorithm in Grid, Cloud, and Fog

Author:

Beigrezaei Mahsa1ORCID,Haghighat Abolfazel Toroghi1ORCID,Mirtaheri Seyedeh Leili2ORCID

Affiliation:

1. Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2. Electrical and Computer Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran

Abstract

The efficiency of data-intensive applications in distributed environments such as Cloud, Fog, and Grid is directly related to data access delay. Delays caused by queue workload and delays caused by failure can decrease data access efficiency. Data replication is a critical technique in reducing access latency. In this paper, a fuzzy-based replication algorithm is proposed, which avoids the mentioned imposed delays by considering a comprehensive set of significant parameters to improve performance. The proposed algorithm selects the appropriate replica using a hierarchical method, taking into account the transmission cost, queue delay, and failure probability. The algorithm determines the best place for replication using a fuzzy inference system considering the queue workload, number of accesses in the future, last access time, and communication capacity. It uses the Simple Exponential Smoothing method to predict future file popularity. The OptorSim simulator evaluates the proposed algorithm in different access patterns. The results show that the algorithm improves performance in terms of the number of replications, the percentage of storage filled, and the mean job execution time. The proposed algorithm has the highest efficiency in random access patterns, especially random Zipf access patterns. It also has good performance when the number of jobs and file size are increased.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Replication and Placement Strategies in Distributed Systems: A State of the Art Survey;Wireless Personal Communications;2023-03-20

2. A new hyper-heuristic based on ant lion optimizer and Tabu search algorithm for replica management in cloud environment;Artificial Intelligence Review;2022-11-23

3. Fuzzy Theory in Fog Computing: Review, Taxonomy, and Open Issues;IEEE Access;2022

4. NCRG: A Node Classification Method Based on Updated Risk Graph under Hybrid Replica Consistency Strategy;2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3