Path Loss Characterization Using Machine Learning Models for GS-to-UAV-Enabled Communication in Smart Farming Scenarios

Author:

Duangsuwan Sarun1ORCID,Juengkittikul Phakamon2,Myint Maw Myo3

Affiliation:

1. Electrical Engineering, Department of Engineering, Prince of Chumphon Campus, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Pathio, Chumphon 86160, Thailand

2. Electrical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand

3. Department of Computer Engineering and Information Technology, Mandalay Technological University (MTU), Patheingyi Township, Mandalay, Myanmar

Abstract

The purpose of this paper was to predict the path loss characterization of the ground-to-air (G2A) communication channel between the ground sensor (GS) and unmanned aerial vehicle (UAV) using machine learning (ML) models in smart farming (SF) scenarios. Two ML algorithms such as support vector regression (SVR) and artificial neural network (ANN) were studied to analyze the measured data in different scenarios with Napier and Ruzi grass farms as the measurement locations. The proposed empirical GS-to-UAV two-ray (GUT-R) model and the ML models were compared to characterize path loss prediction models. The performances of the path loss prediction models were evaluated using the statistical error indicators in different measurement locations and UAV trajectories. To obtain the statistical error indicators, the accuracy path loss results of UAV trajectory at 2 m altitudes showed the SVR model (MAE = 1.252 dB, RMSE = 3.067 dB, and R2 = 0.972) and the ANN model (MAE = 1.150 dB, RMSE = 2.502 dB, and R2 = 0.981) for the Napier scenario. In the Ruzi scenario, the SVR model (MAE = 1.202 dB, RMSE = 2.962 dB, and R2 = 0.965) and the ANN model (MAE = 1.146 dB, RMSE = 2.507 dB, and R2 = 0.983) were presented. For UAV trajectory at 5 m altitudes, the SVR model (MAE = 2.125 dB, RMSE = 4.782 dB, and R2 = 0.933) and the ANN model (MAE = 2.025 dB, RMSE = 4.439 dB, and R2 = 0.950) were resulted in the Napier scenario. In the Ruzi scenario, the SVR model (MAE = 2.112 dB, RMSE = 4.682 dB, and R2 = 0.935) and the ANN model (MAE = 2.016 dB, RMSE = 4.407 dB, and R2 = 0.954) were displayed. The proposed ML models using SVR and ANN can optimally predict the path loss characterization in SF scenarios, where the accuracy was 95% for the SVR and 97% for the ANN.

Funder

King Mongkut's Institute of Technology Ladkrabang

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Reference31 articles.

1. Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications

2. AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming

3. Computer Vision System for Automatic Counting of Planting Microsites Using UAV Imagery

4. Optimization of energy and water consumption on crop irrigation using UAVs via path design;C. D. Lopez

5. Real-time SLAM based on image stitching for autonomous navigation of UAVs in GNSS-denied regions;M. Rizk

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3