Response Characteristics of Dynamic Torque for Wet Clutch Engagement: A Numerical and Experimental Study

Author:

Zhang Zhigang12ORCID,Zou Ling1ORCID,Liu Hang1ORCID,Feng Jin1ORCID,Chen Zhige1ORCID

Affiliation:

1. Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China

2. Ningbo Shenglong Group Co., Ltd., Ningbo 315104, China

Abstract

To determine the factors affecting the dynamic transmitted torque response characteristics of the wet clutch, the oil film pressure, the asperity contact pressure, the applied pressure, and the dynamic transmitted torque model were established, using the fourth-order Runge–Kutta numerical method to couple the oil film thickness and the speed difference to obtain the change curve of the joint pressure and the transmitted torque. The established model was used to study the influence of the pressure hysteresis time, lubricant viscosity, friction lining permeability, friction pair equivalent elastic modulus, and surface combined roughness RMS on the dynamic transmitted torque response during the wet clutch engagement. The results indicate that the longer the pressure hysteresis time, the smaller the permeability of the friction lining, the smaller the equivalent elastic modulus, the greater surface combined roughness RMS, the more delayed the response of the transmitted torque, and the smaller the level of jerk of the wet clutch engagement. Also, the lower the lubricant viscosity, the greater the permeability of the friction lining, and the smaller the equivalent elastic modulus is and the greater surface combined roughness RMS is, the more sensitive the transmitted torque response is to pressure response changes.

Funder

Chongqing Research Program of Basic Research and Frontier Technology

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3