Recommendation with Diversity: Mass Diffusion Model Based on Trust Network and Object Reputation

Author:

Bai Yun1ORCID,Cai Wandong1

Affiliation:

1. School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The traditional mass diffusion recommendation algorithm only relies on the user’s object collection relationship, resulting in poor recommendation performance for users with small purchases (i.e., small-degree user), and it is difficult to balance the accuracy and diversity of the recommendation system. This paper introduces the trust relationship into the resource allocation process of the traditional mass diffusion algorithm and proposes the Dual Wing Mass Diffusion model (DWMD), which constructs a dual wing graph based on trust relationships and object collection relationships. Implicit trust is mined according to the network structure of the trust relationship and integrated into the resource allocation process, and then merging the positive effects of object reputation on a recommendation through tunable scaling parameters. The user controls the tunable scaling parameter to achieve the best recommendation performance. The experimental results show that the DWMD method significantly improves diversity and novelty while ensuring high accuracy and effectively improves the accuracy and diversity balance. The improved recommendation performance for small-degree users proves that the trust relationship can effectively alleviate the generalized cold start problem of the recommendation algorithm for users who collect a small number of objects.

Funder

Science and Technology Planning Project of Yulin City

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference29 articles.

1. A Survey of Collaborative Filtering Techniques

2. A hybrid recommendation system based on profile expansion technique to alleviate cold start problem

3. A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems

4. A temporal clustering approach for social recommender systems;S. Ahmadian

5. An improved model of trust-aware recommender systems using reliability measurements;S. Ahmadian

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3