Affiliation:
1. School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
Abstract
The traditional mass diffusion recommendation algorithm only relies on the user’s object collection relationship, resulting in poor recommendation performance for users with small purchases (i.e., small-degree user), and it is difficult to balance the accuracy and diversity of the recommendation system. This paper introduces the trust relationship into the resource allocation process of the traditional mass diffusion algorithm and proposes the Dual Wing Mass Diffusion model (DWMD), which constructs a dual wing graph based on trust relationships and object collection relationships. Implicit trust is mined according to the network structure of the trust relationship and integrated into the resource allocation process, and then merging the positive effects of object reputation on a recommendation through tunable scaling parameters. The user controls the tunable scaling parameter to achieve the best recommendation performance. The experimental results show that the DWMD method significantly improves diversity and novelty while ensuring high accuracy and effectively improves the accuracy and diversity balance. The improved recommendation performance for small-degree users proves that the trust relationship can effectively alleviate the generalized cold start problem of the recommendation algorithm for users who collect a small number of objects.
Funder
Science and Technology Planning Project of Yulin City
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献