A Novel Model for Predicting the Well Production in High-Sulfur-Content Gas Reservoirs

Author:

Zou Chunmei12,Wang Xiaodong1,Hu Jinghong1ORCID,Lv Yang3,Fang Bo1ORCID,Zhang Yuan1

Affiliation:

1. Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering, China University of Geosciences, Beijing, China

2. Research Institute of Petroleum Exploration and Development, Beijing, China

3. The Fifth Gas Production Plant in Changqing Oilfield Company, Xi’an, Shanxi, China

Abstract

High-content H2S gas reservoirs are important for natural gas extraction. However, the precipitation and deposition of elemental sulfur in high-sulfur-content gas reservoirs eventually lead to porosity and permeability damage, resulting in the low well productivity. Therefore, it is worth developing an accurate production prediction model considering sulfur deposition for fractured horizontal wells. In this study, based on the partition model and transient percolation theory, a novel numerical model considering the damage of sulfur deposition with pressure change on reservoir porosity and permeability was first developed to predict the production from fractured horizontal wells in high-sulfur-content gas reservoirs. Then, it was validated by actual field data from a high-sulfur-content gas reservoir. After that, the influence of sulfur deposition on the production of fractured horizontal wells was revealed through theoretical calculations, and the effects of hydraulic fracture parameters on production were analyzed. The results show that elemental sulfur gradually deposits in the reservoir pores as the reservoir pressure decreases and the production time increases, which eventually leads to permeability damage and reduces reservoir productivity; this negative impact gradually increases over time. It is also shown that the production of fractured horizontal wells increases with an increase in the half-length, fracture conductivity, and fracture number. Compared with the fracture half-length, the fracture conductivity and fracture number have a greater influence on the production of a single well. The model can handle the influence of nonlinear parameters caused by sulfur deposition, which allows accurate calculations and provides guidance for the development of fractured horizontal wells in gas reservoirs with high sulfur content.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3