Effects of Unidirectional In Situ Stress on Crack Propagation of a Jointed Rock Mass Subjected to Stress Wave

Author:

Fan Zhanfeng12ORCID,Cai Jianhua3ORCID

Affiliation:

1. School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

3. China Railway Southwest Research Institute Co., Ltd., Chengdu 611731, China

Abstract

This paper proposes a large-scale experiment combined with multiple cement mortar blocks to simulate stress wave propagation across a jointed rock mass under unidirectional in situ stress. Two identical mortar block models with smooth, dry, and unfilled joints were poured. The stress waves in Model 1 and Model 2 were generated by an electric spark source and a blast-induced source, respectively. The effects of these two excitation sources on stress wave propagation were compared through crack propagation experiments. The experimental results show that the peak value of the transmitted strain wave decreases as the in situ stress increases. The unidirectional in situ stress has a certain inhibitory effect on the stress wave propagation. It also indicates that for Model 1 with the electric spark source, no cracks on the upper surface, but a Livingstone blasting crater at the bottom is generated. For Model 2 with the blast-induced source, cracks on the upper surface and a blasting crater at the bottom are produced. The results verify the similarity between the electric spark source and the explosive source. The two-dimensional finite element program (ANSYS/LS-DYNA) was applied to further simulate the crack propagation of a jointed rock mass under different in situ stresses. The results of numerical simulation verify that the in situ stress has a clear guiding effect on the crack propagation.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3