Time-Dependent Lagrangian Energy Systems on Supermanifolds with Graph Bundles

Author:

Aycan Cansel1ORCID,Şimşek Simge1ORCID

Affiliation:

1. Science Faculty, Department of Mathematics, Pamukkale University, 20020 Denizli, Turkey

Abstract

The aim of this article is firstly to improve time-dependent Lagrangian energy equations using the super jet bundles on supermanifolds. Later, we adapted this study to the graph bundle. Thus, we created a graph bundle by examining the graph manifold structure in superspace. The geometric structures obtained for the mechanical energy system with superbundle coordinates were reexamined with the graph bundle coordinates. Thus, we were able to calculate the energy that occurs during the motion of a particle when we examine this motion with graph points. The supercoordinates on the superbundle structure of supermanifolds have been given for body and soul and also even and odd dimensions. We have given the geometric interpretation of this property in coordinates for the movement on graph points. Lagrangian energy equations have been applied to the presented example, and the advantage of examining the movement with graph points was presented. In this article, we will use the graph theory to determine the optimal motion, velocity, and energy of the particle, due to graph points. This study showed a physical application and interpretation of supervelocity and supertime dimensions in super-Lagrangian energy equations utilizing graph theory.

Publisher

Hindawi Limited

Subject

General Mathematics

Reference24 articles.

1. Interactive control of planar class a bezier curves using logarithmic curvature graphs;Y. Norimasa;Computer- Aided Design and Applications,2008

2. A new graph invariant;İ.N. Cangül;Turkish Journal of Analysis and Number Theory,2018

3. Applications of topological graph theory to 2-manifold learning;T. Berry,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3