A Panax notoginseng Root Tip Meristem Biosensor and Its Sensing Kinetics for Five Important Nitrogen Nutrients

Author:

Zheng Zi Qing1,Niu Bo1,Lu Ding Qiang12ORCID,Pang Guang Chang12ORCID

Affiliation:

1. College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin 300314, China

2. Tianjin Key Laboratory of Food Biotechnology, Tianjin 300314, China

Abstract

Plants absorb nitrogen mainly through their roots. Nitrogen sensing is required for the absorption and transport of different nitrogen nutrients. In this study, we constructed biosensors with immobilized Panax notoginseng root tip meristems based on a three-electrode system and successfully determined the kinetics of the interactions between the P. notoginseng root tip meristems and five important nitrogen nutrients, namely, urea, sodium nitrate, sodium glutamate, disodium inosinate, and disodium guanylate. We discovered that the biosensor’s sensing kinetics was similar to the enzyme–substrate kinetics, and the receptor–ligand interconnected allosteric interaction constant Ka (mol/L), analogous to the Michaelis constant, was calculated. The result showed that the root tip meristems of two- to four-year-old P. notoginseng plants had a higher capacity to sense inorganic nitrogen nutrients (sodium nitrate and urea) than the three organic nitrogen nutrients. The ability of the plants to sense inorganic nitrogen nutrients decreased with an increase in plant age. The sensing sensitivity of four-year-old P. notoginseng plants to disodium inosinate and disodium guanylate was 100- to 10,000-fold lower than that of the two- and three-year-old plants. Additionally, the capability to sense sodium glutamate decreased initially and then increased with an increase in plant age. The biosensors reached an ultra-sensitive level ( 1 × 10 22  mol/L) in sensing the five nitrogen nutrients and exhibited advantages such as good stability and reproducibility, low cost, a simple structure, and a rapid response, providing a new approach for quantitative determination of the capability of plants to sense different nitrogen nutrients.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3