Vacuum Preconsolidation Settlement Characteristics and Microstructural Evolution of Marine Dredger-Filled Silt

Author:

Chen Keping12,Ren Xinkai12,He Yong12ORCID,Gan Muyuan3,Wu Danwei3,Chen Lianwei3

Affiliation:

1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, China

2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

3. Guangxi Liuzhou Iron and Steel Group Company Limited, Liuzhou 545002, China

Abstract

The method of vacuum preloading for foundation treatments is used in the construction of the Fangchenggang coastal area in Guangxi province, China. The thick marine dredger-filled silt has a considerable impact on the treatment effort. In this study, the mineral composition and grain size distribution of these silts were analyzed to investigate their consolidation settlement property and microstructures. The scanning electron microscope and finite element method were adopted. The results reveal that the dredger-filled silt in this area is composed mainly of sand with particle size mostly smaller than 0.075 mm. To replicate the construction process, the process of drainage by the vacuum preloading method was simulated by setting different water levels in the finite element analysis. The displacement and the dissipation of the pore water pressure obtained by simulations were reasonably consistent with the field monitoring data. In addition, the results obtained using the scanning electron microscope indicate that the equivalent diameter of the structural unit and that of the pore unit decrease with the silt depth. However, the value of the structural abundance approaches one, whereas the pore abundance is significantly different from one.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3