Affiliation:
1. Institute of Computing, Kohat University of Science and Technology, Kohat 26000, Pakistan
2. College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
3. Department of Computer Science, Islamia College Peshawar, Peshawar 25000, Pakistan
Abstract
Seasonal outbreaks have several different periods that occur primarily during winter in temperate regions, while influenza may occur throughout the year in tropical regions, triggering outbreaks more irregularly. Similarly, dengue occurs in the star of the rainy season in early May and reaches its peak in late June. Dengue and flu brought an impact on various countries in the years 2017–2019 and streaming Twitter data reveals the status of dengue and flu outbreaks in the most affected regions. This research work presents that Social Media Analysis (SMA) can be used as a detector of the epidemic outbreak and to understand the sentiment of social media users regarding various diseases. Providing awareness about seasonal outbreaks through SMA is an effective approach for researchers and healthcare responders to detect the early outbreaks. The proposed model aims to find the sentiment about the disease in tweets, and the seasonal outbreaks-related tweets are classified into two classes as disease positive and disease negative. This work proposes a machine-learning-based approach to detect dengue and flu outbreaks in social media platform Twitter, using four machine learning algorithms: Random Forest (RF), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Decision Tree (DT), with the help of Term Frequency and Inverse Document Frequency (TF-IDF). For experimental analysis, two datasets (dengue and flu) are analyzed individually. The experimental results show that the RF classifier has outperformed the comparison models in terms of improved accuracy, precision, recall, F1-measure, and Receiver Operating Characteristic (ROC) curve. The proposed work offers favorable performance with total precision, accuracy, recall, and F1-measure ranging from 84% to 88% for conventional machine learning techniques.
Funder
Deanship of Scientific Research, King Saud University
Subject
Multidisciplinary,General Computer Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献