Posture Recognition and Behavior Tracking in Swimming Motion Images under Computer Machine Vision

Author:

Zhang Zheng1ORCID,Huang Cong23ORCID,Zhong Fei2ORCID,Qi Bote2ORCID,Gao Binghong45ORCID

Affiliation:

1. School of Sport Science, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China

2. Department of Sports and Exercise Science, College of Education, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, China

3. Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo- Machi, Aoba-ku, Sendai 980-8575, Japan

4. School of Physical Education and Sport Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China

5. Shanghai Research Institute of Sports Science, Shanghai 200030, China

Abstract

This study is to explore the gesture recognition and behavior tracking in swimming motion images under computer machine vision and to expand the application of moving target detection and tracking algorithms based on computer machine vision in this field. The objectives are realized by moving target detection and tracking, Gaussian mixture model, optimized correlation filtering algorithm, and Camshift tracking algorithm. Firstly, the Gaussian algorithm is introduced into target tracking and detection to reduce the filtering loss and make the acquired motion posture more accurate. Secondly, an improved kernel-related filter tracking algorithm is proposed by training multiple filters, which can clearly and accurately obtain the motion trajectory of the monitored target object. Finally, it is proposed to combine the Kalman algorithm with the Camshift algorithm for optimization, which can complete the tracking and recognition of moving targets. The experimental results show that the target tracking and detection method can obtain the movement form of the template object relatively completely, and the kernel-related filter tracking algorithm can also obtain the movement speed of the target object finely. In addition, the accuracy of Camshift tracking algorithm can reach 86.02%. Results of this study can provide reliable data support and reference for expanding the application of moving target detection and tracking methods.

Funder

Shanghai University of Sport

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3