A Validated Study of a Modified Shallow Water Model for Strong Cyclonic Motions and Their Structures in a Rotating Tank

Author:

Chen Hung-Cheng1ORCID,Leu Jai-Houng1ORCID,Liu Yong1ORCID,Xie He-Sheng1ORCID,Chen Qiang2ORCID

Affiliation:

1. School of Intelligent Manufacturing, Shandong Polytechnic, Jinan 250104, China

2. School of Railway, Shandong Polytechnic, Jinan 250104, China

Abstract

A joint theoretical and numerical study was carried out to investigate the fluid dynamical aspect of the motion of a vortex generated in a rotating tank with a sloping bottom. This study aims at understanding the evolution of strong cyclonic motions on a β-plane in the Northern Hemisphere. The strong cyclonic vortices were characterized by four nondimensional parameters which were derived through a scale analysis of the depth variations of fluid. By simplifying the model flow field and the prototype flow field, respectively, through the conservation of potential vorticity, two sets of dynamic similarity conditions are derived. This study proposed a sophisticated modified shallow water model (MSWM) to investigate the flow features of such strong vortices. A detailed numerical calculation adopted by multidimensional positive definite advection transport algorithm (MPDATA) was carried out to validate those effects considered in the MSWM model, including sloping bottom, parabolic free surface deformation, and viscous dissipation. Close agreements were found between the experimental and numerical results, including the streamlines patterns and the vortex trajectory. Comprehensive simulations for strong cyclonic vortices over different sloping bottoms were investigated to understand the impact of planetary β effect on vortex. The results calculated by MSWM demonstrate a variety of flow features of interactions between the primary vortex and induced secondary Rossby wave wakes that were essential and prominent in environmental geophysical flows.

Funder

Shandong Polytechnic

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3