Improvement of Gas Drainage Efficiency via Optimization of Sealing Depth of Cross-Measure Boreholes

Author:

Li Pu12,Cheng Zhiheng3ORCID,Chen Liang3ORCID,Wang Hongbing3,Cao Jialin3

Affiliation:

1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China

2. Zhengzhou Coal Industry (Group) Co. LTD, Zhengzhou, Henan 450042, China

3. School of Safety Engineering, North China Institute of Science and Technology, Beijing 101601, China

Abstract

The sealing depth of a gas-drainage borehole is critically important as it directly affects the efficiency of the whole drainage system. In order to determine the shortest reasonable sealing depth, in this paper, a theoretical drainage model using different sealing depths was proposed. Based on theoretical analysis presented, two parts of the fractures system surrounding the drainage borehole were proposed, i.e. the fractures induced by roadway excavation and the fractures induced by borehole drilling. A series of geological in-situ tests and simulations research were conducted to determine the stress and fracture distributions in the surrounding rock of the borehole. The depths of crushing zones, plastic zones and stress concentration zones were determined as 5 m, 2 m and 12 m, respectively. Meanwhile, stress simulation shows that the depth of the stress concentration zone was 12 m from the roadway wall and the stress peak was located at the depth of 8 m, which can be verified by the results of drilling penetration velocity analysis. To determine the optimum sealing depth, gas drainage holes with different sealing depths were drilled in the field. The field results revealed that the crushing zones were the main area for air leakage, and the stress concentration induced by roadway excavation assisted in the reduction of air leakage. Therefore, the optimized sealing depth should both cover the plastic zone and the stress concentration zone. The research achievements can provide a quantitative method for the determination of optimum sealing depth in cross-measure drainage boreholes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference40 articles.

1. Numerical simulation of boreholes for gas extraction and effective range of gas extraction in soft coal seams

2. Mine gas prevention and control;Q. X. Yu;China University of Mining and Technology Press,2012

3. Review of coal and gas outburst in Australian underground coal mines

4. New development of hydraulic fracturing technique for in-situ stress measurement at great depth of mines

5. Suggestions and countermeasures on the current situation of coal and gas outburst in China;Q. Hu;Ming safety & environmental protection,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3