Algorithmic Study of the Characteristics of Electrocardiograph Signals in Patients with Coronary Heart Disease

Author:

Li Honger1ORCID,Zhao Lixia1ORCID

Affiliation:

1. Electrocardiographic Room, Zhejiang Xiaoshan Hospital, Hangzhou 311200, China

Abstract

This work aimed to analyze the electrocardiogram (ECG) characteristics and signal classification of patients with coronary heart disease (CHD) diagnosed by coronary angiography, so as to provide a theoretical basis for the clinical adoption of ECG images. 106 patients with CHD who were admitted to the XXX hospital from January 15, 2019, to May 30, 2020, underwent coronary intervention therapy, and their ECG indicators were recorded during the operation. Then, the LetNet-SoM algorithm designed in this work, as well as the traditional algorithms GoogLeNet and SqueezeNet, was applied to the patient’s ECG classification. It was found that part of ECG wave (QRS) and corrected Q-T interval (QTC) of patients after treatment were higher than those before treatment ( P < 0.05 ), but PR interval, RR interval, Tpeak-Tend (TpTe) interval, and QT interval were not substantially different from those before treatment ( P > 0.05 ). The diagnostic accuracy, sensitivity, and specificity of LetNet-SoM algorithm for patients with CHD were better than those of traditional algorithms, with evident difference ( P < 0.05 ). The classification time of LetNet-SoM algorithm was lower in contrast to that of traditional algorithms, and the difference was also notable ( P < 0.05 ). The R wave and T wave indicators of patients after treatment were higher than before treatment, with notable difference ( P < 0.05 ). The difference between the patient’s S wave indicator before and after treatment was not statistically significant ( P > 0.05 ). The positive rate of S wave amplitude, QRS, and QTC was 68.15%, 60.52%, and 51.36%, respectively. In short, the LetNet-SoM algorithm designed based on lightweight neural network had excellent performance in classification and diagnosis of ECG, and it had the value of further popularization and application. The ECG signals were important indicators in the diagnosis of CHD, among which the S wave amplitude, QRS, and QTC were the most sensitive ones.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3