Stability Analysis of Soil Embankment Slope Reinforced with Polypropylene Fiber under Freeze-Thaw Cycles

Author:

Gong Yafeng1ORCID,He Yulong1,Han Chunpeng2,Shen Yangfan1,Tan Guojin1ORCID

Affiliation:

1. Jilin University, College of Transportation, Changchun 130025, China

2. Northeast Forestry University, College of Civil Engineering, Harbin 150040, China

Abstract

Polypropylene fiber is a common soil reinforcement material which is used to reinforce a common clay in northeast China. Numerical analysis method was performed to investigate the effect of polypropylene fibers on stability of embankment slope subjected to freeze-thaw cycles. The orthogonal experiments of three factors (freeze-thaw cycle, fiber content, and fiber length) and three levels were carried out, and the corresponding nine groups of specimens were made, whose shear strength parameters (internal friction angle and bond force) were measured by direct shear test. Then, the experimental results were analyzed by analysis of variance and range analysis so that the optimum fiber content and fiber length can be determined. The finite element model of typical high-fill soil slope of freeway in northeast China was established whose basic material parameters were taken as the parameters of shear strength of different freeze-thaw cycles under the optimum fiber content and fiber length. The concept of shear strength reduction was introduced into the finite element model, and the convergence of the finite element model was taken as the judging criterion of slope stability. Thus, stability analysis of soil embankment slope reinforced with polypropylene fiber under freeze-thaw cycles was realized. The results show that the addition of fibers improves the cohesion under the action of freeze-thaw cycles, and the internal friction angle is improved in the case of freezing and thawing. This phenomenon leads to the improvement of the stability of the embankment slope in a freeze-thaw cycle. The improvement is particularly noticeable in the case, and this improvement effect decreases as the number of freeze-thaw cycles increases.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3