Numerical Study of the Influence of Cavity on Immiscible Liquid Transport in Varied-Wettability Fractures

Author:

Dou Zhi12,Zhou Zhifang2,Tan Yefei3,Zhou Yanzhang4

Affiliation:

1. Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China

2. School of Earth Science and Engineering, Hohai University, Nanjing 210098, China

3. Department of Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

4. Department of Geotechnical Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

Abstract

Field evidence indicates that cavities often occur in fractured rocks, especially in a Karst region. Once the immiscible liquid flows into the cavity, the cavity has the immiscible liquid entrapped and results in a low recovery ratio. In this paper, the immiscible liquid transport in cavity-fractures was simulated by Lattice Boltzmann Method (LBM). The interfacial and surface tensions were incorporated by Multicomponent Shan-Chen (MCSC) model. Three various fracture positions were generated to investigate the influence on the irreducible nonwetting phase saturation and displacement time. The influences of fracture aperture and wettability on the immiscible liquid transport were discussed and analyzed. It was found that the cavity resulted in a long displacement time. Increasing the fracture aperture with the corresponding decrease in displacement pressure led to the long displacement time. This consequently decreased the irreducible nonwetting phase saturation. The fracture positions had a significant effect on the displacement time and irreducible saturation. The distribution of the irreducible nonwetting phase was strongly dependent on wettability and fracture position. Furthermore, this study demonstrated that the LBM was very effective in simulating the immiscible two-phase flow in the cavity-fracture.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3