Affiliation:
1. Mechatronics Engineering Department, Engineering Faculty, Firat University, 23119 Elazig, Turkey
Abstract
This paper presents a novel color face recognition algorithm by means of fusing color and local information. The proposed algorithm fuses the multiple features derived from different color spaces. Multiorientation and multiscale information relating to the color face features are extracted by applying Steerable Pyramid Transform (SPT) to the local face regions. In this paper, the new three hybrid color spaces,YSCr,ZnSCr, andBnSCr, are firstly constructed using theCbandCrcomponent images of theYCbCrcolor space, theScolor component of theHSVcolor spaces, and theZnandBncolor components of the normalizedXYZcolor space. Secondly, the color component face images are partitioned into the local patches. Thirdly, SPT is applied to local face regions and some statistical features are extracted. Fourthly, all features are fused according to decision fusion frame and the combinations of Extreme Learning Machines classifiers are applied to achieve color face recognition with fast and high correctness. The experiments show that the proposed Local Color Steerable Pyramid Transform (LCSPT) face recognition algorithm improves seriously face recognition performance by using the new color spaces compared to the conventional and some hybrid ones. Furthermore, it achieves faster recognition compared with state-of-the-art studies.
Funder
Firat University Scientific Research Projects Foundation
Subject
General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献