Performance Analysis of Bloom Filter for Big Data Analytics

Author:

Alsuhibany Suliman A.1ORCID,Alsuhaibani Mohammed1ORCID,Khan Rehan Ullah2ORCID,Qamar Ali Mustafa1ORCID

Affiliation:

1. Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia

2. Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia

Abstract

The rapid rise of data value, such as social media and mobile applications, results in large volumes of data, which is what the term “big data” refers to. The increased rate of data growth makes handling big data very challenging. Despite a Bloom filter (BF) technique having previously been proposed as a space-and-time efficient probabilistic method, this proposal has not yet been evaluated in terms of big data. This study, thus, evaluates the BF technique by conducting an experimental study with a large amount of data. The results revealed that BF overcomes the efficiency not present in the space-and-time of indexing and examining big data. Moreover, to address the increase of false-positive rate in using BF with big data, a novel false-positive rate reduction approach is proposed in this paper. The initial experimental results of evaluating this method are very promising. The novel approach helped to reduce the false-positive rate by more than 70%.

Funder

Prince Faisal bin Mishaal Al Saud for Artificial Intelligent Research

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3