Expression and Role of Oct3/4 in Injury-Repair Process of Rat Alveolar Epithelium after 5-Fu Treatment

Author:

Li Wen-ya12ORCID,Ye Xu-lv13,Jia Xin-shan13ORCID,Jia Lan-ling13

Affiliation:

1. Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China

2. Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China

3. Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China

Abstract

Objective. We aimed to investigate how the embryonic stem cell-related gene Oct3/4 changes during the injury-repair process of distal pulmonary epithelium induced by 5-fluorouracil (5-Fu).Methods. We have developed the lung injury model induced by 5-Fu and observed the dynamic changes of Oct3/4 by indirect immunofluorescence, Western blot, and quantitative real-time PCR. Immunofluorescence double staining was used to compare the positions of Oct3/4(+) cells and other reported alveolar epithelial stem cells.Results. Oct3/4(+) cells were not found in normal rat lung epithelial cells. However, after treatment with 5-Fu, Oct3/4(+) cells appeared at 12 h, reached the peak at 24 h, then decreased at 48 h, and eventually disappeared at 72 h. Oct3/4 was localized in the nucleus. We found that the sites of Clara cell secretory protein and surfactant protein-C dual positive cells were apparently different from Oct3/4(+) cells.Conclusions. Our results revealed that, in rat alveolar epithelium, expression of Oct3/4 could be induced after treatment with 5-Fu, then decreased gradually, and was silenced following the alveolar epithelial differentiation. We hold that Oct3/4(+) cells are lung stem cells, which can provide new evidence for identification and isolation of lung epithelial stem cells.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3