A New Method of Central Axis Extracting for Pore Network Modeling in Rock Engineering

Author:

Guo Xiao1ORCID,Yang Kairui1ORCID,Jia Haowei1,Tao Zhengwu2,Xu Mo1,Dong Baozhu3,Liu Lei4

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, China

2. Research Institute of Exploration and Development Korla, PetroChina Tarim Oilfield Co., Korla, China

3. Kenli 3-2 Oilfield, Bonan Operation Company, Tianjin Branch of CNOOC (China) Co., Ltd., Tianjin, China

4. Sichuan Baoshihua Xinsheng Oil and Gas Operation Service Co., Ltd. of Southwest Oil and Gas Field Branch, China

Abstract

Characterizing internal microscopic structures of porous media is of vital importance to simulate fluid and electric current flow. Compared to traditional rock mechanics and geophysical experiments, digital core and pore network modeling is attracting more interests as it can provide more details on rock microstructure with much less time needed. The axis extraction algorithm, which has been widely applied for pore network modeling, mainly consists of a reduction and burning algorithm. However, the commonly used methods in an axis extraction algorithm have the disadvantages of complex judgment conditions and relatively low operating efficiency, thus losing the practicality in application to large-scale pore structure simulation. In this paper, the updated algorithm proposed by Palágyi and Kuba was used to perform digital core and pore network modeling. Firstly, digital core was reconstructed by using the Markov Chain Monte Carlo (MCMC) method based on the binary images of a rock cutting plane taken from heavy oil reservoir sandstone. The digital core accuracy was verified by comparing porosity and autocorrelation function. Then, we extracted the central axis of the digital pore space and characterize structural parameters through geometric transformation technology and maximal sphere method. The obtained geometric parameters were further assigned to the corresponding nodes of pore and throat on the central axis of the constructed model. Moreover, the accuracy of the new developed pore network model was measured by comparing pore/throat parameters, curves of mercury injection, and oil-water relative permeability. The modeling results showed that the new developed method is generally effective for digital core and pore network simulation. Meanwhile, the more homogeneity of the rock, which means the stronger “representative” of binary map the rock cutting plane, the more accurate simulated results can be obtained.

Funder

Southwest Petroleum University

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random Functions and Random Fields, Autocorrelation Functions;Earth and Environmental Sciences Library;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3