Bed Position Classification by a Neural Network and Bayesian Network Using Noninvasive Sensors for Fall Prevention

Author:

Viriyavit Waranrach12ORCID,Sornlertlamvanich Virach13ORCID

Affiliation:

1. School of ICT, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand

2. Department of Medical Engineering, Chiba University, Chiba 263-8522, Japan

3. Department of Data Science, Musashino University, Tokyo 135-8181, Japan

Abstract

Falls from a bed often occur when an elderly patient attempts to get out of bed or comes close to the edge of a bed. These mishaps have a high possibility of serious injuries, such as bruises, soreness, and bone fractures. Moreover, a lack of repositioning the body of a bedridden elderly person may cause bedsores. To avoid such a risk, a continuous activity monitoring system is needed for taking care of the elderly. In this study, we propose a bed position classification method based on the sensor signals collected from only four sensors that are embedded in a panel (composed of two piezoelectric sensors and two pressure sensors). It is installed under the mattress on the bed. The bed positions considered are classified into five different classes, i.e., off-bed, sitting, lying center, lying left, and lying right. To collect the training dataset, three elderly patients were asked for consent to participate in the experiment. In our approach, a neural network combined with a Bayesian network is adopted to classify the bed positions and put a constraint on the possible sequences of the bed positions. The results from both the neural network and Bayesian network are combined by the weighted arithmetic mean. The experimental results have a maximum accuracy of position classification of 97.06% when the proportion of coefficients for the neural network and the Bayesian network is 0.3 and 0.7, respectively.

Funder

National Research Council of Thailand

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3