Differential Games of Rechargeable Wireless Sensor Networks against Malicious Programs Based on SILRD Propagation Model

Author:

Liu Guiyun1ORCID,Peng Baihao1ORCID,Zhong Xiaojing1ORCID,Lan Xuejing1ORCID

Affiliation:

1. School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

Based on the traditional propagation model, this paper innovatively divides nodes into high- and low-energy states through introducing Low-energy (L) state and presents a whole new propagation model which is more suitable for WSNs (wireless sensor networks) against malicious programs, namely, SILRD (Susceptible, Infected, Low-energy, Recovered, Dead) model. In this paper, nodes are divided into five states according to the residual energy and infection level, and the differential equations are constructed to describe the evolution of nodes. At the same time, aiming at the exhaustion of WSNs’ energy, this paper introduces charging as a method to supplement the energy. Furthermore, we regard the confrontation between WSNs and malicious programs as a kind of game and find the optimal strategies by using the Pontryagin Maximum Principle. It is found that charging as a defense mechanism can inhibit the spread of malicious programs and reduce overall costs. Meanwhile, the superiority of bang-bang control on the SILRD model is highlighted by comparing with square control.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3