Affiliation:
1. College of Field Engineering, PLA University of Science and Technology, Nanjing 210007, China
Abstract
Accurate forecasting of electrical energy consumption of equipment maintenance plays an important role in maintenance decision making and helps greatly in sustainable energy use. The paper presents an approach for forecasting electrical energy consumption of equipment maintenance based on artificial neural network (ANN) and particle swarm optimization (PSO). A multilayer forward ANN is used for modeling relationships between the input variables and the expected electrical energy consumption, and a new adaptive PSO algorithm is proposed for optimizing the parameters of the ANN. Experimental results demonstrate that our approach provides much better accuracies than some other competitive methods on the test data.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献