Fractalkine (CX3CL1) and Its Receptor CX3CR1 May Contribute to Increased Angiogenesis in Diabetic Placenta

Author:

Szukiewicz Dariusz1ORCID,Kochanowski Jan2,Pyzlak Michal1,Szewczyk Grzegorz1ORCID,Stangret Aleksandra1ORCID,Mittal Tarun Kumar3

Affiliation:

1. Department of General & Experimental Pathology, Second Faculty of Medicine, Medical University of Warsaw, Ulica Krakowskie Przedmiescie 26/28, 00-928 Warsaw, Poland

2. Department of Neurology, Second Faculty of Medicine, Medical University of Warsaw, Ulica Ceglowska 80, 01-809 Warsaw, Poland

3. Department of Obstetrics & Gynecology, Second Faculty of Medicine, Medical University of Warsaw, Ulica Kondratowicza 8, 03-242 Warsaw, Poland

Abstract

Chemokine CX3CL1 is unique, possessing the ability to act as a dual agent: chemoattractant and adhesive compound. Acting via its sole receptor CX3CR1, CX3CL1 participates in many processes in human placental tissue, including inflammation and angiogenesis. Strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokines secretion, CX3CL1 may act locally as a key angiogenic factor. Both clinical observations and histopathological studies of the diabetic placenta have confirmed an increased incidence of hypoxia and inflammatory reactions with defective angiogenesis. In this study we examined comparatively (diabetes class C complicated versus normal pregnancy) the correlation between CX3CL1 content in placental tissue, the mean CX3CR1 expression, and density of the network of placental microvessels. A sandwich enzyme immunoassay was applied for CX3CL1 measurement in placental tissue homogenates, whereas quantitative immunohistochemical techniques were used for the assessment of CX3CR1 expression and the microvascular density. Significant differences have been observed for all analyzed parameters between the groups. The mean concentration of CX3CL1 in diabetes was increased and accompanied by augmented placental microvessel density as well as a higher expression of CX3CR1. In conclusion, we suggest involvement of CX3CL1/CX3CR1 signaling pathway in the pathomechanism of placental microvasculature remodeling in diabetes class C.

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3