A Statistical Prediction Model for Healthcare and Landslide Sensitivity Evaluation in Coal Mining Subsidence Area

Author:

Ge Ruoxin1,Lv Yiqing1ORCID,Tao Weiheng1ORCID

Affiliation:

1. School of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

The purpose of this study is to compare the results of the frequency ratio (FR) model with the weight of evidence (WOE) and the logical regression (LR) methods when applied to the landslide susceptibility evaluation in coal mining subsidence areas. Key geological disaster prevention and control areas are taken as the research areas. Field investigation is carried out according to the recorded landslide disaster points in the past five years, and 86 landslide disaster points are determined from the remote sensing satellite images. Furthermore, 12 factors affecting the occurrence of landslide are selected as landslide sensitivity evaluation factors. Among them, slope degree, curvature, elevation, and slope aspect are derived using the digital elevation model (DEM) through 30 m × 30 m resolution. The DEM datasets are derived from the geospatial data cloud, lithology datasets are derived from the geological lithology maps, and land use type map is derived from the current situation of national land use. The distances between roads and coal mining subsidence areas are calculated according to field investigation and remote sensing image interpretation results. In addition, the evaluation model includes an annual rainfall distribution map. Finally, the accuracy of three models is compared by ROC curve analysis. The elevation results demonstrate that the frequency ratio-logic regression (FR-LR) model takes the maximum accurateness of 0.913, subsequent to the FR model and the frequency ratio-weight of evidence (FR-WOE) model, respectively. Thus, using LR method based on the FR model has guiding significance for predicting the landslide sensitivity in coal mining. This reduces probable risks and disasters that affect human health. Subsequently, this ensures higher safety from the healthcare perspective in the mining fields.

Funder

Natural Science Foundation of Shanxi Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference30 articles.

1. Sensitivity analysis of seismic landslide based on slope unit;D. D. Qiu;Journal of Natural Disasters,2017

2. Regional landslide hazard level mapping based on factor analysis and binary statistical model-Taking Longnan Section of National Highway 212 as an example;F. Y. Zhang;Advances in Earth Science,2008

3. A Fuzzy Comprehensive Evaluation Method Based on AHP and Entropy for a Landslide Susceptibility Map

4. A brief discussion on the matters that bidders should pay attention to during tendering;W. Y. Yang;Shanxi Architecture,2018

5. Performance analysis of landslide susceptibility assessment under different factor-filtering models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3