A Study on Mode Shape and Natural Frequency of Rotating Flexible Cracked Annular Thin Disk

Author:

Zhao Jinghe1ORCID,Zhang Ying1,Jiang Bo1

Affiliation:

1. School of Mechanical Engineering, Changchun Guanghua University, Changchun 130033, China

Abstract

As an important rotating component, the flexible annular thin disk is widely used in mechanical engineering. Cracks may occur in some weak disk parts, which will greatly shorten the equipment service life and even cause equipment failure. Due to the centrosymmetric structure of the flexible annular disk, two typical cracks are studied in this paper; one is radial crack parallel to diameter, including radial closed crack (RC-crack) and radial opening crack (RO-crack); the other one is vertical crack perpendicular to diameter, including circumferential crack (CF-crack) and tangential crack (TG-crack). The effect of crack parameters, such as crack length, direction, and position, on disk vibration characteristics are studied through theoretical simulation and experimental verification. The research shows that the effect of cracks on vibration characteristic gets more obvious with cracks extending in most cases, RO-crack decreases the natural frequency obviously, and vertical cracks would affect mode shapes. In addition, the bigger the nodal diameter is, the more obvious the effect gets. Meanwhile, the most obvious effect appears in the mode of a nodal diameter locating on the crack. The research possesses some guiding significance in industrial production; by comparing with the vibration characteristics of the flawless disk, the integrity of the rotating flexible disk can be judged to prevent possible equipment damage.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the Mode Shapes of Kaplan Runners;Applied Sciences;2022-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3