Fractionation of Rare Earth Elements in Greisen and Hydrothermal Veins Related to A-Type Magmatism

Author:

Tillberg Mikael1ORCID,Maskenskaya Olga M.1,Drake Henrik1ORCID,Hogmalm Johan K.2,Broman Curt3,Fallick Anthony E.4,Åström Mats E.1

Affiliation:

1. Linnaeus University, Department of Biology and Environmental Science, SE-39182 Kalmar, Sweden

2. University of Gothenburg, Department of Earth Sciences, SE-40530 Gothenburg, Sweden

3. Stockholm University, Department of Geological Sciences, 106 91 Stockholm, Sweden

4. Scottish Universities Environmental Research Centre, G75 0QF Glasgow, UK

Abstract

This study focuses on concentrations and fractionation of rare earth elements (REE) in a variety of minerals and bulk materials of hydrothermal greisen and vein mineralization in Paleoproterozoic monzodiorite to granodiorite related to the intrusion of Mesoproterozoic alkali- and fluorine-rich granite. The greisen consists of coarse-grained quartz, muscovite, and fluorite, whereas the veins mainly contain quartz, calcite, epidote, chlorite, and fluorite in order of abundance. A temporal and thus genetic link between the granite and the greisen/veins is established via high spatial resolution in situ Rb-Sr dating, supported by several other isotopic signatures (δ34S, 87Sr/86Sr, δ18O, and δ13C). Fluid-inclusion microthermometry reveals that multiple pulses of moderately to highly saline aqueous to carbonic solutions caused greisenization and vein formation at temperatures above 200–250°C and up to 430°C at the early hydrothermal stage in the veins. Low calculated ∑REE concentration for bulk vein (15 ppm) compared to greisen (75 ppm), country rocks (173–224 ppm), and the intruding granite (320 ppm) points to overall low REE levels in the hydrothermal fluids emanating from the granite. This is explained by efficient REE retention in the granite via incorporation in accessory phosphates, zircon, and fluorite and unfavorable conditions for REE partitioning in fluids at the magmatic and early hydrothermal stages. A noteworthy feature is substantial heavy REE (HREE) enrichment of calcite in the vein system, in contrast to the relatively flat patterns of greisen calcite. The REE fractionation of the vein calcite is explained mainly by fractional crystallization, where the initially precipitated epidote in the veins preferentially incorporates most of the light REE (LREE) pool, leaving a residual fluid enriched in the HREE from which calcite precipitated. Fluorite occurs throughout the system and displays decreasing REE concentrations from granite towards greisen and veins and different fractionation patterns among all these three materials. Taken together, these features confirm efficient REE retention in the early stages of the system and minor control of the REE uptake by mineral-specific partitioning. REE-fractionation patterns and fluid-inclusion data suggest that chloride complexation dominated REE transport during greisenization, whereas carbonate complexation contributed to the HREE enrichment in vein calcite.

Funder

Svenska Forskningsrådet Formas

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3