Psi-Caputo Logistic Population Growth Model

Author:

Awadalla Muath1ORCID,Yameni Noupoue Yves Yannick2ORCID,Asbeh Kinda Abu1ORCID

Affiliation:

1. Department of Mathematics and Statistics, College of Science, King Faisal University, Hafuf, Al Ahsa 31982, Saudi Arabia

2. Universite Catholique de Louvain, Louvain-La-Neuve, Belgium

Abstract

This article studies modeling of a population growth by logistic equation when the population carrying capacity K tends to infinity. Results are obtained using fractional calculus theories. A fractional derivative known as psi-Caputo plays a substantial role in the study. We proved existence and uniqueness of the solution to the problem using the psi-Caputo fractional derivative. The Chinese population, whose carrying capacity, K, tends to infinity, is used as evidence to prove that the proposed approach is appropriate and performs better than the usual logistic growth equation for a population with a large carrying capacity. A psi-Caputo logistic model with the kernel function x + 1 performed the best as it minimized the error rate to 3.20% with a fractional order of derivative α  = 1.6455.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3