TEM Response of a Large Loop Source over the Multilayer Earth Models

Author:

Tiwari A. K.1,Maurya S. P.1,Singh N. P.1ORCID

Affiliation:

1. Department of Geophysics, Faculty of Science, Banaras Hindu University, Varanasi 221005, India

Abstract

The general expression of TEM response of large loop source over the layered earth models is not available in the literature for arbitrary source-receiver positions, except for the case of central loop and coincident loop configurations over the homogeneous earth model. In the present study, an attempt is made to present the TEM response of a large loop source over the layered earth model for arbitrary receiver positions. The frequency domain responses of large loop source over the layer earth model for arbitrary receiver positions are converted into the impulse (time derivative of magnetic field) TEM response using Fourier cosine or sine transform. These impulse TEM responses in turn are converted into voltage responses for arbitrary receiver positions, namely, central loop, arbitrary in-loop, and offset-loop TEM responses over the layered earth models. For checking the accuracy of the method, results are compared with the results obtained using analytical expression over a homogeneous earth model. The complete matching of both of the results suggests that the present computational technique is capable of computing TEM response of large loop source over the homogeneous earth model with high accuracy. Thereafter, the technique is applied for computation of TEM response of a large loop source over the layered earth (2-layer, 3-layer, and 4-layer) models for the central loop, in-loop, and offset-loop configurations and the results are presented in voltage decay form. The results depict their characteristic variations. These results would be useful for modeling and inversion of large loop TEM data over the layer earth models for all the possible configurations resulting from a large loop source.

Publisher

Hindawi Limited

Subject

Geophysics,Water Science and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3