A Hybrid Stochastic-Interval Analytic Hierarchy Process Approach for Prioritizing the Strategies of Reusing Treated Wastewater

Author:

Jing Liang1,Chen Bing12,Zhang Baiyu1,Li Pu1ORCID

Affiliation:

1. Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X5

2. Key Laboratory of Regional Energy and Environmental Systems Optimization, Ministry of Education, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China

Abstract

This paper proposes a hybrid stochastic-interval analytic hierarchy process (SIAHP) approach to address uncertainty in group decision making by integrating interval judgment, probabilistic distribution, lexicographic goal programming, and Monte Carlo simulation. A case study related to wastewater treatment plant (WWTP) effluent reuse was conducted to demonstrate the feasibility of the proposed approach. Four candidate alternatives including city moat landscaping, municipal reuse, industrial reuse, and agricultural irrigation were evaluated by five experts according to technical, economic, and environmental criteria. The results suggest that industrial reuse (0.18–0.3) is more preferred over municipal reuse (0.16–0.25) or agricultural irrigation (0.17–0.26) in most replications. The final score of city moat landscaping ranges from 0.11 to 0.31 which indicates a great divergence of expert opinions. It can be concluded that choosing industrial reuse seems to give the best overall account of technical, economic, and environmental concerns. The proposed SIAHP approach can aid group decision making by accommodating linguistic information and dealing with insufficient information or biased opinions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3