Application of Fault-Tolerant Mechanism to Reduce Pollution Attacks in Peer-to-Peer Networks

Author:

Chen Chien-Sheng1ORCID,Yeh Ting-Yuan2,Lee Chin-Tan3,Lu Chyuan-Der4

Affiliation:

1. Department of Information Management, Tainan University of Technology, Tainan 71002, Taiwan

2. Department of Engineering Science, National Cheng Kung University, Tainan 70000, Taiwan

3. Department of Electronic Engineering, National Quemoy University, Quemoy 89250, Taiwan

4. Department of Finance, Tainan University of Technology, Tainan 71002, Taiwan

Abstract

File pollution is a recent security threat to peer-to-peer (P2P) file sharing systems. By disseminating numerous polluted files with mismatched or partially tampered contents in the P2P system, the attacker causes users to download unexpected files. This attack is aimed at frustrating users and making them abandon the system. Present researches on combating file pollution have mostly focused on pollution modeling or evaluating the extent of pollution. Only a few researches have proposed effective methods to eliminate pollution attacks, and they are primarily based on reputation systems and blacklisting mechanisms. However, these methods require exchange of significant feedback among the peers in order to identify the malicious peers or polluted files in the system. In this paper, we describe the application of fault-tolerant mechanism used in the redundant arrays of independent disks system to suppress file pollution attacks based on the concept that P2P file sharing systems currently have global file storage systems. We have extended the previously developed Fluid Model to analyze and evaluate the proposed antipollution mechanism. The model accuracy has been demonstrated by performing several simulation experiments; the proposed mechanism could effectively suppress the pollution and successfully decrease the polluted-time exposure of a P2P file sharing system by approximately 40∼60%.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3