Effect of Chemical Corrosion on the Mechanical Characteristics of Parent Rocks for Nuclear Waste Storage

Author:

Han Tielin12ORCID,Shi Junping23ORCID,Chen Yunsheng12ORCID,Li Zhihui23ORCID

Affiliation:

1. Institute of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China

2. School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an 710048, China

3. State Key Laboratory Base of Ecohydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China

Abstract

Long-term immersion was adopted to explore the damage deterioration and mechanical properties of granite under different chemical solutions. Here, granite was selected as the candidate of parent rocks for nuclear waste storage. The physical and mechanical properties of variation regularity immersed in various chemical solutions were analyzed. Meanwhile, the damage variable based on the variation in porosity was used in the quantitative analysis of chemical damage deterioration degree. Experimental results show that granite has a significant weakening tendency after chemical corrosion. The fracture toughnessKIC, splitting tensile strength, and compressive strength all demonstrate the same deteriorating trend with chemical corrosion time. However, a difference exists in the deterioration degree of the mechanical parameters; that is, the deterioration degree of fracture toughnessKICis the greatest followed by those of splitting tensile strength and compressive strength, which are relatively smaller. Strong acid solutions may aggravate chemical damage deterioration in granite. By contrast, strong alkaline solutions have a certain inhibiting effect on chemical damage deterioration. The chemical solutions that feature various compositions may have different effects on chemical damage degree; that is,SO42-ions have a greater effect on the chemical damage in granite thanHCO3-ions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3