Path Planning and Setup Orientation for Automated Dimensional Inspection Using Coordinate Measuring Machines

Author:

Abdulhameed Osama12ORCID,Al-Ahmari Abdulrahman12ORCID,Mian Syed Hammad1ORCID,Aboudaif Mohamed K.1

Affiliation:

1. Raytheon Chair for Systems Engineering (RCSE), Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia

2. Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

Inspection planning is considered an essential practice in the manufacturing industries because it ensures enhanced product quality and productivity. A reasonable inspection plan, which can reduce inspection costs and achieve high customer satisfaction, is therefore very important in the production industry. Considerations such as preparations for part inspection, measuring machines, and their setups as well as the measurement path are described in an inspection plan which is subsequently translated into part inspection machine language. Therefore, the measurement of any component using a coordinate measuring machine (CMM) is the final step preceded by several other procedures, such as the preparation of the part setup and the generation of the probe path. Effective measurement of components using CMM can only be done if the preceding steps are properly optimized to automate the whole inspection process. This paper has proposed a method based on artificial intelligence techniques, namely, artificial neural network (ANN) and genetic algorithm (GA), for fine-tuning output from the different steps to achieve an efficient inspection plan. A case study to check and validate the suggested approach for producing effective inspection plans for CMMs is presented. A decrease of nearly 50% was observed in the travel path of the probe, whereas the CMM measurement time was reduced by almost 25% during the actual component measurement. The proposed method yielded the optimum part setup and the most appropriate measuring sequence for the part considered.

Funder

Raytheon Chair for Systems Engineering

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3