Affiliation:
1. Teaching Supervision Department, Zhejiang College of Security Technology, Wenzhou 325016, China
2. School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China
Abstract
Polar harmonic transforms (PHTs) have been applied in pattern recognition and image analysis. But the current computational framework of PHTs has two main demerits. First, some significant color information may be lost during color image processing in conventional methods because they are based on RGB decomposition or graying. Second, PHTs are influenced by geometric errors and numerical integration errors, which can be seen from image reconstruction errors. This paper presents a novel computational framework of quaternion polar harmonic transforms (QPHTs), namely, accurate QPHTs (AQPHTs). First, to holistically handle color images, quaternion-based PHTs are introduced by using the algebra of quaternions. Second, the Gaussian numerical integration is adopted for geometric and numerical error reduction. When compared with CNNs (convolutional neural networks)-based methods (i.e., VGG16) on the Oxford5K dataset, our AQPHT achieves better performance of scaling invariant representation. Moreover, when evaluated on standard image retrieval benchmarks, our AQPHT using smaller dimension of feature vector achieves comparable results with CNNs-based methods and outperforms the hand craft-based methods by 9.6% w.r.t mAP on the Holidays dataset.
Funder
National Science Foundation of China
Subject
Computer Science Applications,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献