Manycore Performance-Portability: Kokkos Multidimensional Array Library

Author:

Edwards H. Carter1,Sunderland Daniel2,Porter Vicki2,Amsler Chris3,Mish Sam4

Affiliation:

1. Computing Research Center, Sandia National Laboratories, Livermore, CA, USA

2. Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM, USA

3. Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA

4. Department of Mathematics, California State University, Los Angeles, CA, USA

Abstract

Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel execution performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].

Funder

U.S. Department of Energy

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KokkACC: Enhancing Kokkos with OpenACC;2022 Workshop on Accelerator Programming Using Directives (WACCPD);2022-11

2. Lagrangian simulations of spray interaction with a surface using a stochastic multi-regime impingement model;AIAA Scitech 2020 Forum;2020-01-05

3. Porting the COSMO Weather Model to Manycore CPUs;Proceedings of the Platform for Advanced Scientific Computing Conference;2019-06-12

4. Evaluating data parallelism in C++ using the Parallel Research Kernels;Proceedings of the International Workshop on OpenCL;2019-05-13

5. An Adaptive Particle Tracking Algorithm for Lagrangian-Eulerian Simulations of Dispersed Multiphase Flows;AIAA Scitech 2019 Forum;2019-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3