Influence of Abutment Stiffness and Strength on the Seismic Response of Horizontally Curved RC Bridges in Comparison with Equivalent Straight Bridges at Different Seismic Intensity Levels

Author:

Heydarpour Khashayar1ORCID,Tehrani Payam1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Seismic design codes have imposed some limitations on the maximum subtended angle of curved bridges and allow engineers to analyze and design them using an equivalent straight bridge. This paper investigates these limitations and evaluates the AASHTO code recommendations regarding the prediction of the seismic responses of curved bridges using an equivalent straight bridge for bridges with different abutment properties at different seismic hazard levels. In this regard, the seismic responses of 21 horizontally curved and straight RC four-span bridges with different abutment types are investigated. In 7 bridge models, soil-abutment-bridge interaction is neglected, while in the rest of the bridge models, the seat-type abutments with the participation of the nonlinear backfill soil, gap, and abutment piles are used in structural modeling. First, nonlinear static (pushover) analyses are carried out to evaluate the overall behavior of the bridges with different abutment configurations in the two perpendicular principal directions. Subsequently, nonlinear time history analyses are performed to predict the seismic response of bridge elements, including column drifts and deck displacements at the place of the abutments in the radial and tangential directions at different seismic intensity levels, including the design basis earthquake (DBE) and maximum credible earthquake (MCE) excitation levels. In addition, the actual maximum displacements of the components of the bridges (i.e., the total absolute displacements) were also predicted and evaluated for different cases. It was found that the abutment properties and boundary conditions had a significant effect on the seismic response assessment of curved bridges compared to straight bridges, while such parameters are not currently considered by the design codes. The results also indicated that by increasing the seismic intensity level, more limitations should be imposed on the use of the equivalent straight bridges.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3