Study on Double Pressure Funnels and Gas-Liquid Two-Way Mass Transfer after Fracturing in Shale Gas Reservoirs

Author:

Lu Zhiwei12ORCID,Li Xizhe123ORCID,Liang Xing4,Hao Youzhi5ORCID

Affiliation:

1. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

2. Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China

3. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

4. PetroChina Zhejiang Oilfield Company, Hangzhou 310023, China

5. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

Abstract

Well shut-in and drainage after shale gas fracturing are important factors affecting the productivity. Due to the imperfect optimization method of shale gas flowback, there has been no clear explanation for the problems such as “formulation of reasonable well shut-in time” and “less fracturing fluid flowback but high-gas production phenomenon” during shale gas drainage. In this paper, the double pressure funnels (one funnel is formed during fracturing by pressure difference from wellbore to formation, and two funnels are formed during flowback by pressure difference from fracture to formation and from fracture to wellbore) and gas-liquid two-way mass transfer (gas transfer by diffusion and liquid transfer by pressure difference) in shale gas drainage are investigated by calculating the pressure distribution after fracturing shale gas wells. The discrete numerical simulation by using unstructured PEBI grid is conducted, and the result is as follows: when shale gas well is shut-in for 20 days and produce for 1 year, the daily gas production corresponding to fracturing fluid flowback rates of 20%, 10%, and 5% are 47700 m3, 5800 m3, and 72700 m3, respectively. The investigation of double pressure funnels and gas-liquid two-way mass transfer explains clearly the phenomenon “less fracturing fluid flowback but high-gas production.” Meanwhile, the two conditions for optimizing the well shut-in time after fracturing are presented. That is, as for the studied case, the moving speed of the pressure boundary line should be less than 0.1 m/d, and the water-gas ratio near the fracture should be less than 1 / d with time. Consequently, the reasonable well shut-in time is optimized to be 20-25 days. The findings in this work are of benefit to enrich the flowback theory of shale gas after fracturing and provide a theoretical basis for the optimization technology of shale gas drainage after fracturing.

Funder

Basic Theory and Key Technology of Shale Gas Exploration and Development

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3