Affiliation:
1. State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
Abstract
In this paper, a new modular upper limb rehabilitation exoskeleton, which is actuated by a parallel mechanical structure, is designed to help stroke patients. For analysing the relationship between motor torque and joint torque of the novel exoskeleton, a conversion algorithm mapping motor motion to joint motion is developed here. Then, to simplify the dynamics model of exoskeleton with parallel actuated joints, the serial equivalence configuration dynamics of the exoskeleton is established to be equivalent to the parallel joints dynamics. Afterwards, a torque controller used for our exoskeleton is designed based on the proposed conversion algorithm and the inverse dynamics of exoskeleton. It should be noted that the controller mentioned above combines both conversion algorithm and joint position decoupling. At last, for verifying the effectiveness of the proposed algorithms, a trajectory tracking simulation is given, and the simulated results show the proposed algorithms are valid.
Funder
National Key R&D Program of China
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献