Titanium Dioxide Nanoparticles Induce Mitochondrial Dynamic Imbalance and Damage in HT22 Cells

Author:

Zhao Han12,Chen Liang1,Zhong Guisheng3,Huang Yina12,Zhang Xulai4,Chu Cenfeng3,Chen Lin12ORCID,Wang Ming12ORCID

Affiliation:

1. Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China

2. Auditory Research Laboratory, University of Science and Technology of China, Hefei 230027, China

3. iHuman Institute, ShanghaiTech University, Shanghai 201210, China

4. Anhui Mental Health Center, Anhui Province, Hefei 230022, China

Abstract

Mitochondria, as dynamic organelles, are precisely regulated by fusion and fission. The dynamic balance of fusion and fission controls mitochondrial morphology and their subcellular location and function. Exposure to titanium dioxide nanoparticles (TiO2 NPs) may cause serious health problems. However, how TiO2 NPs affect the mitochondrial dynamics remains unclear. In the present study, we investigated the changes of mitochondrial dynamics in the TiO2NPs-treated HT22 cells by confocal and stimulated emission depletion (STED) microscopy. The confocal images demonstrated obvious changes in the average length and density of the mitochondria after TiO2 NPs treatment, while STED images further obtained the nanoscale submitochondrial structures of the mitochondria under TiO2 NPs insult. The fluorescence intensity distributions suggested that mitochondria fragmented in the TiO2 NPs-treated cells. TiO2 NPs treatment caused mitochondrial dynamic imbalance due to the imbalanced expression of dynamin-related protein 1 (Drp1) and optic atrophy 1 (Opa1). Furthermore, we examined the levels of oxidative stress and mitochondrial membrane potential (MMP) and the generation of adenosine triphosphate (ATP), which revealed the damage of mitochondria under TiO2 NPs exposure. Meanwhile, the significant changes of expressions of B-cell lymphoma 2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), cytochrome c (Cyt C), and caspase 9 demonstrated that TiO2 NPs treatment activated the mitochondrial-related apoptosis pathway. These cellular events can be largely prevented via cell incubation with mitoTEMPO, a mitochondria-targeted superoxide scavenger. Our results confirm that TiO2 NPs targeted the mitochondria, inducing mitochondrial dynamic imbalance and damage in HT22 cells. Our study provides an insightful understanding of the mechanisms underlying TiO2 NPs cytotoxicity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3