A Novel Nonlinear Function Fitting Model Based on FOA and GRNN

Author:

Zhang Yongli1ORCID,Niu Jianguang1ORCID,Na Sanggyun2

Affiliation:

1. School of Management Science and Engineering, Hebei GEO University, Shijiazhuang, Hebei Province, China

2. College of Business Administration, Wonkwang University, Iksan, Jeonbuk, Republic of Korea

Abstract

The nonlinear function fitting is an essential research issue. At present, the main function fitting methods are statistical methods and artificial neural network, but statistical methods have many inherent strict limits in application, and the back propagation (BP) neural network used widely has too many optimized parameters. For the gaps and lacks of existing researches, the FOA-GRNN was proposed and compared with the GRNN, GA-BP, PSO-BP, and BP through three nonlinear functions from simplicity to complexity for verifying the accuracy and robustness of the FOA-GRNN. The experiment results showed that the FOA-GRNN had the best fitting precision and fastest convergence speed; meanwhile the predictions were stable and reliable in the Mexican Hat function and Rastrgrin function. In the most complex Griewank function, the prediction of FOA-GRNN was becoming unstable and the model did not show better than GRNN model adopting equal step length searching method, but the performance of FOA-GRNN is superior to that of GA-BP, PSO-BP, and BP. The paper presents a new approach to optimize the parameter of GRNN and also provides a new nonlinear function fitting method, which has better fitting precision, faster calculation speed, more few adjusted parameters, and more powerful processing ability for small samples. The processing capacity of FOA for treating high complex nonlinear function needs to be further improved and developed in the future study.

Funder

National Social Science Fund of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3