Affiliation:
1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2. Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology (Beijing Jiaotong University), Ministry of Education, Beijing 100044, China
Abstract
Rail corrugation often occurs on the high-speed railway, which will affect ride comfort and even the train operation safety in severe condition. Detection of rail corrugation wavelength and depth is absolutely essential for maintenance and safety. A novel method using wheel vibration acceleration is proposed in this paper, in which ensemble empirical mode decomposition (EEMD) is employed to estimate the wavelength, and bispectrum features are extracted to recognize the depth with support vector machine (SVM). Firstly, a vehicle-track coupling model considering the rail corrugation of high-speed railway is established to calculate the wheel vibration acceleration. Secondly, the estimation algorithm of wavelength is studied by analyzing the main frequency with EEMD. The optimal parameters of EEMD are selected according to the orthogonal coefficient of decomposition results and the distribution of the extreme points of signal. The depth detection is transformed to a classification problem with SVM. Bispectrum features, which are extracted from the reconstructed signal using the high-frequency components of wheel vibration acceleration, combining with train speed and corrugation wavelength are input into SVM to recognize the rail corrugation depth. Finally, numerical simulation is carried out to verify the accuracy of the proposed estimation method. The simulation results show that the proposed detection algorithm can accurately identify rail corrugation, the estimation error of rail corrugation wavelength is less than 0.25%, and the classification accuracy of rail corrugation depth is more than 99%.
Funder
National Key Research and Development Program of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献