Affiliation:
1. Reshetnev Siberian State University of Science and Technology, Prosp.Krasnoysrskiy Rabochiy 31, Krasnoyarsk 660037, Russia
Abstract
The k-means problem is one of the most popular models of cluster analysis. The problem is NP-hard, and modern literature offers many competing heuristic approaches. Sometimes practical problems require obtaining such a result (albeit notExact), within the framework of the k-means model, which would be difficult to improve by known methods without a significant increase in the computation time or computational resources. In such cases, genetic algorithms with greedy agglomerative heuristic crossover operator might be a good choice. However, their computational complexity makes it difficult to use them for large-scale problems. The crossover operator which includes the k-means procedure, taking the absolute majority of the computation time, is essential for such algorithms, and other genetic operators such as mutation are usually eliminated or simplified. The importance of maintaining the population diversity, in particular, with the use of a mutation operator, is more significant with an increase in the data volume and available computing resources such as graphical processing units (GPUs). In this article, we propose a new greedy heuristic mutation operator for such algorithms and investigate the influence of new and well-known mutation operators on the objective function value achieved by the genetic algorithms for large-scale k-means problems. Our computational experiments demonstrate the ability of the new mutation operator, as well as the mechanism for organizing subpopulations, to improve the result of the algorithm.
Funder
Ministry of Education and Science of the Russian Federation
Subject
General Engineering,General Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献