K-Means Genetic Algorithms with Greedy Genetic Operators

Author:

Kazakovtsev Lev1ORCID,Rozhnov Ivan1ORCID,Shkaberina Guzel1ORCID,Orlov Viktor1ORCID

Affiliation:

1. Reshetnev Siberian State University of Science and Technology, Prosp.Krasnoysrskiy Rabochiy 31, Krasnoyarsk 660037, Russia

Abstract

The k-means problem is one of the most popular models of cluster analysis. The problem is NP-hard, and modern literature offers many competing heuristic approaches. Sometimes practical problems require obtaining such a result (albeit notExact), within the framework of the k-means model, which would be difficult to improve by known methods without a significant increase in the computation time or computational resources. In such cases, genetic algorithms with greedy agglomerative heuristic crossover operator might be a good choice. However, their computational complexity makes it difficult to use them for large-scale problems. The crossover operator which includes the k-means procedure, taking the absolute majority of the computation time, is essential for such algorithms, and other genetic operators such as mutation are usually eliminated or simplified. The importance of maintaining the population diversity, in particular, with the use of a mutation operator, is more significant with an increase in the data volume and available computing resources such as graphical processing units (GPUs). In this article, we propose a new greedy heuristic mutation operator for such algorithms and investigate the influence of new and well-known mutation operators on the objective function value achieved by the genetic algorithms for large-scale k-means problems. Our computational experiments demonstrate the ability of the new mutation operator, as well as the mechanism for organizing subpopulations, to improve the result of the algorithm.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference86 articles.

1. The complexity of the generalized Lloyd - Max problem (Corresp.)

2. NP-hardness of Euclidean sum-of-squares clustering

3. Least squares quantization in PCM

4. Some methods of classification and analysis of multivariate observations;J. B. MacQueen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3