Affiliation:
1. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China
2. School of Civil Engineering, Chongqing University, Chongqing 400045, China
Abstract
The complex high temperature and high stress are commonly encountered in the hot dry rock for geothermal energy development; the thermal effect on the rock properties and corresponding thermal-hydromechanical coupling process has attracted much more attentions in the field of the energy. Taking the sandstones in Chongqing as a case study, the physical and mechanical experiments of the heat-treated sandstones and corresponding permeability tests under triaxial loading conditions have been widely conducted. It can be seen that the quality, porosity, uniaxial compression strength, and elastic modulus of the heated sandstones vary differently with different heat-treated temperature. As for the permeability tests in the process of gradual failure under triaxial loading conditions, the permeability variation divided by four variation stages is the same as that under room temperature condition, and the initial permeability, minimum permeability, and maximum permeability have been characterized with temperature variation, showing that the permeability variation in a certain temperature range from 400°C to 600°C presents more obvious than that in other temperature ranges. Furthermore, the relationship between the permeability and the crack volumetric strain of the heat-treated sandstones is further analyzed to prove the mechanism of the permeability evolution. In addition, a damage model has been proposed to deeply determine the correlation of the permeability and damage variables, indicating that gradual damage variation has caused obvious cracks to form flow paths and abruptly change the permeability variation, revealing that the damage can describe the permeability evolution of the heat-treated sandstones considering different temperature and loading conditions.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Reference39 articles.
1. Experimental investigation of granite properties under different temperatures and pressures and numerical analysis of damage effect in enhanced geothermal system
2. A study of the crack network in thermally and mechanically cracked granite samples using confocal scanning laser microscopy
3. Testing study on mechanical properties of post-high-temperature granite;S. J. Du;Chinese Journal of Rock Mechanics and Engineering,2004
4. Experimental research on mechanical properties of coarse sandstone after high temperature;S. Chengdong;Chinese Journal of Rock Mechanics and Engineering,2008
5. Experimental study on effect of temperature on sandstone damage;Z. Hongzhi;Chinese Journal of Rock Mechanics and Engineering,2009
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献