Geological Core Ground Reorientation Technology Application on In Situ Stress Measurement of an Over-Kilometer-Deep Shaft

Author:

Ma Chunde12,Li Xibing1,Chen Jiangzhan1ORCID,Zhou Yanan1,Gao Sen1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China

2. Center for Advanced Study, Central South University, Changsha, Hunan 410083, China

Abstract

As mining progresses to depth, engineering activities face the extreme challenge of high in situ stress. To efficiently measure the deep in situ stress before engineering excavation, an innovative deep in situ stress measurement method capable of the geological core ground reorientation technology and acoustic emission (AE) technology was proposed. With this method, nonorientation geological cores collected from the thousand-meter-deep borehole were reoriented based on the spatial spherical geometry model and borehole bending measurement principle. The distribution of deep in situ stress of an over-kilometer-deep shaft in the Xiangxi gold mine was investigated with real-time synchronized MTS 815 material testing machine and PCI-II AE instrument. The results show that the in situ stress changes from being dominated by horizontal stress to being dominated by vertical stress with depth. The horizontal maximum principal stress and vertical stress gradually increase with depth and reach a high-stress level (greater than 25 MPa) at a depth of 1000 m. The direction of the maximum principal stress is near the north. Meanwhile, to analyze the accuracy of the measured in situ stress comparatively, the stress relief measurements were performed at a depth of 655–958 m in the mine, using the Swedish LUT rock triaxial in situ stress measurement system. The distribution of deep in situ stress obtained by the stress relief method agrees well with that by the AE method, which proves the reliability of the AE in situ stress testing method based on the geological core ground reorientation technology.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3