Biodynamic Response of Seated Human Body to Roll Vibration and Correlation between Roll and Lateral Directions

Author:

Lin Zefeng1ORCID,Zhang Junhong12,Li Jinlu1,Yin Weitan3,Liu Chi3ORCID,Lin Jiewei1ORCID

Affiliation:

1. School of Mechanical Engineering, Tianjin University, Tianjin, China

2. Renai College, Tianjin University, Tianjin, China

3. Institute of Sound and Vibration Research, University of Southampton, Southampton, UK

Abstract

Within 30 Hz, the discomfort caused by whole-body vibration in rotational direction is higher than vertical vibration at similar equivalent magnitude. Roll vibration, in particular, produces greater discomfort comparing with pitch and yaw vibrations. It is critical to understand the biodynamic characteristics of seated human body under roll vibration for both comfort assessment and vibration control. Experiments are carried out to obtain the biodynamic response of seated human body under random roll vibrations at four r.m.s. magnitude levels. It is found that the principal resonance in the roll apparent inertia is about 1 Hz, but varied from 0.7 to 1.5 Hz depending on the magnitude of vibration (0.5 to 2.0 rad/s2), and the secondary resonance locates around 3 Hz with a much lower modulus. It is noted that the human response to roll vibration has some features in common with that in the lateral direction. Two lumped parameter models are developed and calibrated to study the correlation between the two excitation axials. The equivalent relationships of magnitude and phase between roll and lateral vibrations are obtained on condition that they produce similar rotational responses of the upper human body. It suggests an equivalence approach between translational and rotational vibrations that can benefit the comfort assessment when exposed to multiaxial excitations.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3